Telegram Group & Telegram Channel
MoBA: Mixture of Block Attention for Long-Context LLMs представляет собой революционное решение для обработки длинных контекстов в языковых моделях. Вот что в нём интересно:

• Инновационная архитектура:

- Блочное разреженная внимание: Полный контекст делится на блоки, и каждый токен учится выбирать наиболее релевантные блоки, что позволяет эффективно обрабатывать длинные последовательности.

• Параметрически независимый механизм выбора: Внедрён механизм топ-k без дополнительных параметров, который автоматически переключается между полным и разреженным вниманием, что делает модель гибкой и адаптивной.

• Эффективность и масштабируемость:
MoBA обеспечивает значительное ускорение (например, 6.5x скорость при 1 млн входных токенов) без потери производительности, что особенно важно для задач с длинным контекстом.

• Практическое применение:
Модель уже доказала свою эффективность в продакшене и демонстрирует превосходное качество работы.

Проект MoBA будет полезен всем, работающим над масштабированием LLMs и задачами с длинным контекстом, предоставляя эффективный и гибкий механизм внимания, который можно легко интегрировать в существующие системы.

Github

@machinelearning_interview



tg-me.com/machinelearning_interview/1568
Create:
Last Update:

MoBA: Mixture of Block Attention for Long-Context LLMs представляет собой революционное решение для обработки длинных контекстов в языковых моделях. Вот что в нём интересно:

• Инновационная архитектура:

- Блочное разреженная внимание: Полный контекст делится на блоки, и каждый токен учится выбирать наиболее релевантные блоки, что позволяет эффективно обрабатывать длинные последовательности.

• Параметрически независимый механизм выбора: Внедрён механизм топ-k без дополнительных параметров, который автоматически переключается между полным и разреженным вниманием, что делает модель гибкой и адаптивной.

• Эффективность и масштабируемость:
MoBA обеспечивает значительное ускорение (например, 6.5x скорость при 1 млн входных токенов) без потери производительности, что особенно важно для задач с длинным контекстом.

• Практическое применение:
Модель уже доказала свою эффективность в продакшене и демонстрирует превосходное качество работы.

Проект MoBA будет полезен всем, работающим над масштабированием LLMs и задачами с длинным контекстом, предоставляя эффективный и гибкий механизм внимания, который можно легко интегрировать в существующие системы.

Github

@machinelearning_interview

BY Machine learning Interview





Share with your friend now:
tg-me.com/machinelearning_interview/1568

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Machine learning Interview from es


Telegram Machine learning Interview
FROM USA